Jabez Curry Street died in 1989 at the age of eighty-three. In his life the engineer and physicist accomplished twice what even the most productive engineers and physicists accomplish, because he used his great skill in both fields to the fullest: as an engineer, he made possible his achievements in physics. Easily his most noteworthy achievement was the physicist's role he played in the discovery of the subatomic particle called the muon. But it was in his capacity as an engineer that he designed, tested, and built the apparatus that made the muon's discovery possible.

A native of Opelika, Dr. Street earned his bachelor's degree in electrical engineering in 1927 from the Alabama Polytechnic Institute, which would later become Auburn University. After a year spent as a research assistant and instructor at API, he left to pursue M.S. and Ph.D. degrees in physics at the University of Virginia, earning those in 1930 and 1931, respectively. The next year, as a research fellow with the Bartol Research Foundation, Dr. Street began investigating cosmic rays, a study that would absorb his interest throughout his life. In 1932, he joined the faculty at Harvard University, where he remained until his retirement in 1976.

In 1937, having earlier produced evidence of its existence, Dr. Street and E. C. Stevenson were able to measure the mass of the muon, a particle less massive than protons, heavier and more penetrating than electrons. Their feat created a sensation among physicists: this particle apparently was the chief component of the cosmic rays that bombard the planet constantly from all directions. Dr. Street's continued investigations succeeded in demonstrating the mechanism of cosmic ray shower production. William F. Walker, dean of the College of Engineering at Auburn University, noted that "Dr. Street's instruments and the apparatus he used were not ordered out of a scientific catalog, because they did not yet exist. They were built, tested, and refined by Street himself."

J. D. Perez, professor and head of Auburn University's Department of Physics, added, "The development of instrumentation has been vital to the development of modern physics, particularly in the field of elementary particles. Without the ability to accelerate and record the motion of subatomic particles, the recent advances we have seen in physics would have been quite impossible. Street's ability to design and operate modern instrumentation was at the heart of much of his success, and it was his ability as an electrical engineer that made his achievements possible."

During World War II, Dr. Street made significant contributions to the work on microwave radar and the development of the global radio navigation system LORAN. After the war, he returned to Harvard and made important advances in the development of the Cosmotron and the 6GeV electron synchrotron. As a founding member of the Bubble Chamber Collaboration, he contributed much to studies of the production and decay of many newly discovered subatomic particles.

But finally, Jabez Curry Street was more than a brilliant scientist and engineer. He will long be remembered by colleagues and students as an excellent teacher, as well as a man of great humanity and wisdom.